Next generation ocean and sea-ice models Presented by

Alistair Adcroft

Ocean Working Group: Objectives

- Eddying-resolution (¼°)
 ocean component
 - Admit large eddies and internal ocean variability
 - Better resolve boundary regimes, e.g. Labrador Sea boundary currents
 - Allow interactive dynamic
 sub-ice shelf cavities
 - Strategy: z*-coordinate
 first, explore options later
- Basis for branching up/down in resolution

- Address biases of previous models
 - Heat uptake/sea level
 - Processes/coupled interact^{ns}:
 overflows, cryosphere

Jakobshavn & 1/4° Mercator grid

MOM6 development: Objectives

- Unification of MOM4.1/ MOM5/GOLD ocean models
 - C-grid, Finite Volume, ...
- Arbitrary Lagrangian Eulerian Method (ALE) Bleck, 2002
 - General vertical coordinates
 - Efficiencies biogeochemistry
 - Wetting & drying
- Energetically consistent
 - Physically based c.f. morning parameterizations
- Collaborations
 - CVmix, CORE, 4 x CPTs

Spurious mixing

- Spurious mixing depends on:
 - Vertical coordinate
 - Cell Reynolds number
- Extensively demonstrated in idealized experiments

Realistic global models

- Choosing parameters to maximize eddy energy can lead to high spurious mixing
- Does not address representation of overflows

Ilicak et al., 2012; Petersen et al., 2014

Eddy parameterization I

- Even "fine-resolution" ocean models cannot resolve firstmode eddies everywhere —
- Adding a global eddy parameterization dampens resolvable eddies

- Resolution-aware eddy parameterization
 - Allows baroclinic instability to proceed when resolution is sufficient
 - Parameterizes eddy fluxes otherwise Hallberg, 2013

Eddy parameterization II

Higher order closures

Predicts scales to use in eddy parameterization -

e.g.
$$\kappa_h \propto U_e L_e$$

Influence of small scales on large scale

 Backscatter of energy from unresolved scales to resolved scales

Porous barrier representation

e.g. Indonesian Through Flow

Vlean depth on 1° grid

 Use PDF of topography along edges (and within column)

Real-world "actual" values:

Revised sea-ice model: SIS2

- Avoid high-resolution coupling instabilities
 - Dynamics part of ocean
 - Essential for ice-shelf front movement
- Compatible with MOM6
 - C-grid; moving "coasts"
 - Multi-layer; variable salinity
 - Delta-Eddington radiation (from CICE)
- Collaborations: MIT, LANL

CM4 working prototype

Summary

GFDL Ocean Working Group

- Built ¼° resolution ocean component; now refining
- Aim to address biases of previous models (1° and ¼°)

MOM6

- Newer algorithms (more accurate/more efficient)
- Innovative formulations and parameterizations

SIS2

- Update to be compatible with MOM6 + newer physics
 - Address [numerical] stability of high-resolution models

